Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

نویسندگان

  • Han Sang Park
  • Matthew T. Rinehart
  • Katelyn A. Walzer
  • Jen-Tsan Ashley Chi
  • Adam Wax
چکیده

Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection without staining or expert analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016